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Parameter-uniform numerical methods for a laminar
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SUMMARY

We consider the classical problem of a two-dimensional laminar jet of incompressible �uid �owing
into a stationary medium of the same �uid. The equations of motion are the same as the boundary
layer equations for �ow past an in�nite �at plate, but with di�erent boundary conditions. Numerical
experiments show that, using appropriate piecewise-uniform meshes, numerical solutions together with
their scaled discrete derivatives are obtained which are parameter (i.e., viscosity �) robust with respect
to both the number of mesh nodes and the number of iterations required for convergence. While the
method employed is non-conservative, we show with the aid of numerical experiments that the loss in
conservation of momentum is minimal. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: jet problem; boundary-layer equations; piecewise-uniform mesh; parameter-robust
approximations

1. INTRODUCTION

For the numerical solution of many types of linear singular perturbationproblems, methods
which are uniformly convergent with respect to the perturbation parameter were developed
in References [1–3]. The key idea in these methods is the use of piecewise uniform meshes,
which are appropriately condensed in the boundary layer regions. As part of an investigation
into whether these ideas can be used for non-linear problems, in particular �ow problems,
we apply the technique to simple model problems, the exact solutions of which are available.
Such a method was shown in Reference [4] to be uniformly convergent with respect to the
perturbation parameter for the �at plate problem of Blasius [4, 5]. Here, we examine analo-
gously the classical two-dimensional laminar jet problem [5]. Physically, a two-dimensional
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Figure 1. The two dimensional laminar jet (from [5]).

jet of incompressible �uid emerges from a narrow slit in a wall, which is assumed to be
in�nitesimal, into static medium of the same �uid (see Figure 1). In order to maintain a
�nite volume of �ow as well as a �nite momentum it is necessary to assume an in�nite �uid
velocity in the slit [5].
If the jet is thin, such that u the horizontal component of velocity varies much more rapidly

across the jet than along it, i.e. the x-axis, we have a boundary layer at y=0, i.e. the axis of
the jet [6, 7]. The pressure gradient is zero in the jet since it is zero in the surrounding �uid.
In the quarter plane

D= {(x; y) : x¿0; y¿0} (1)

the equations of motion are therefore the same as the Prandtl boundary layer equations [5], i.e.

−�uyy + uux + vuy=0
ux + vy=0

(2)

but with the di�erent boundary conditions

uy(x; 0)= v(x; 0)=0 ∀x¿0
u(0; y)=0 ∀y¿0

lim u(x; y)=0 for x and=or y→∞
(3)

provided that ∫ ∞

−∞
�u2 dy= J0 = constant

where � is the density, � in (2) is the viscosity.
The �rst equation of motion, involving the second derivative of u and the viscosity �, is

clearly a singularly perturbed di�erential equation with � as the perturbation parameter. Our
objective here is to obtain numerical solutions to this problem that are robust with respect to �.
The sensitivity of classical numerical methods to the perturbation parameter is re�ected in the
maximum pointwise errors becoming unacceptably large for small �. This has been shown for
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linear problems, e.g. in Reference [1] where it is also seen that inappropriate condensing of
the mesh in the boundary layer region also fails to resolve the di�culty.
The approach adopted here comprises piecewise-uniform meshes [3], in conjunction with

an upwind �nite di�erence method, which lead to parameter robust numerical solutions, i.e.
numerical solutions where the maximum pointwise error tends to zero independently of the
perturbation parameter, while the work required to obtain the solutions is also independent of
�. As the analytical solution of this particular problem is available we will use it to compute
the discretization errors, always with respect to the discrete L∞ norm ‖ · ‖ ��N� = max ��N� | · |.
It should be noted that Prandtl’s boundary layer equations are valid approximations to the

Navier–Stokes equations only for a small range of values of �. As there is no known parameter
robust method for solving the Navier–Stokes equations, even for this simple geometry, it is
worthwhile considering the solution of a simpler model. The problem under investigation here
falls into this class. In addition, the range of values of � that are employed here may appear
unrealistic, since some of these fall outside the range of values that are physically valid for
the model; however, the reason for the extended range of values here is to present a rigorous
test of the robustness of the numerical method proposed. Numerical results will verify that
this numerical method is indeed parameter robust.

2. THE ANALYTICAL SOLUTION

As mentioned in the previous section it is possible to obtain an analytical solution to the jet
problem under consideration here [5–7]. The exact solutions u and v are

u≡  (x; y)=6�’2
x
y2
sech2’ (4)

v=2�’[2’ sech2’− tanh’] (5)

where

’=
1
2

(
1
6

)1=3( J0
��2

)1=3 y
x2=3

Recall that � is the viscosity, � is the density and J0 is the constant de�ned above, J0 =
∫∞
−∞

�u2 dy. Furthermore, some simple analysis [4, 5] shows that the thickness of the boundary
layer � is

�∼
(
��2

J0

)1=3
x2=3 (6)

Both � and J0 are constants and we set �= J0 = 1 here.

3. THE NUMERICAL SOLUTION

We con�ne consideration to a �nite rectangle

�= (a; A]× (0; B) (7)
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where the constants a; A and B are �xed and independent of the perturbation parameter �.
We �x a¿0 as the equations are singular at x=0 (this is apparent from (4) and (5)). Note
that allowing a to increase as �→ 0 would actually make the problem easier to solve as the
computational domain would be far from the source. However, we require the method to
work well on a �xed domain for all �, and thus �x a. We denote the boundary of � by
�=�L ∪�T ∪�B where �L, �T and �B denote the left, top and bottom edges of �, respectively.
We distinguish these boundaries from the right edge �R = {(x; y) : x=A; y∈ (0; B)}. Thus, it
is required to �nd the solution of Equations (2) on � subject to the boundary conditions

uy=0; v=0 on �B; u=  on �L ∪�T (8)

where  (x; y) is the analytical solution u of the jet problem de�ned by (4).
We now de�ne the computational mesh for this problem. On the rectangular domain �� we

place the piecewise uniform rectangular mesh ��N� which is the tensor product

��N� = ��Nx × ��Ny
� (9)

where N=(Nx; Ny). Here ��Nx is a uniform mesh over the interval [a; A] with Nx mesh in-
tervals, while ��Ny

� is a piecewise uniform �tted mesh with Ny mesh intervals on the interval
[0; B]. The interval [0; B] is divided into two subintervals [0; �] and [�; B], �6B=2, and Ny=2
uniform mesh intervals are assigned to each subinterval. Note that in Sections 3 and 4 we set
Nx=Ny=N .
The transition point � is of signi�cance as, by reducing � as � decreases, the mesh in the

�-neighbourhood of the set y=0 will be condensed. The value of � is chosen, following the
principles set out in References [2, 3] as

�= min
{
1
2 B; C�2=3 ln N

}
The choice of �2=3 is motivated from (6), while C is a constant independent of �, N and
a. Experimentation suggests the particular choice C=2 as a near optimal value which gives
reasonable convergence rates for the iterative process.
We linearize the �rst equation by adapting the continuation algorithm set out in Refer-

ence [3] for the problem of �ow past a �at plate. A monotone di�erence method is required,
in particular for the jet problem, but we still encounter stability di�culties and thus need to
generalize the algorithm from [1], as elaborated below. After linearization and discretization
of (2) and the associated boundary conditions (8) we have the sequence of discrete linear
problems for m=0; 1; : : ::

−��2yU
m
� (xi; yj) + �U�

m−1
D−

x Um
� (xi; yj)

m + �V�
m−1

D±
y Um

� (xi; yj)=0

D−
x Um

� (xi; yj) +D−
y Vm

� (xi; yj)=0
(10)

with boundary conditions

D0
yU

m
� (xi; y0)=0; V m

� (xi; y0)=0 on �B ∩ ��N�
Um

� (x0; yj)= u(x0; yj) on �L ∩ ��N� ; Um
� (xi; yN )= u(xi; yN ) on �T ∩ ��N�

(11)
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where

D+
y Um

� (xi; yj)≡
Um

� (xi; yj+1)−Um
� (xi; yj)

yj+1 − yj

D−
y Um

� (xi; yj)≡
Um

� (xi; yj)−Um
� (xi; yj−1)

yj − yj−1

with analogous de�nition of D−
x Um

� (xi; yj) and D−
y Vm

� (xi; yj),

D0
yU

m
� (xi; yj)≡

Um
� (xi; yj+1)−Um

� (xi; yj−1)
yj+1 − yj−1

�2yU
m
� (xi; yj)≡

D+
y Um

� (xi; yj)−D−
y Um

� (xi; yj)
(yj+1 − yj−1)=2

and where

D±
y Um

� (xi; yj) ≡

D−

y Um
� (xi; yj) for �V�

m−1
(xi; yj)¿0

D+
y Um

� (xi; yj) for �V�
m−1
(xi; yj)¡0

In addition,

�U�
m−1
(xi; yj) = (1− �1)Um−1

� (xi; yj) + �1Um−2
� (xi; yj)

�V�
m−1
(xi; yj) = (1− �2)Vm−1

� (xi; yj) + �2Vm−2
� (xi; yj)

where the parameters 06�1, �261 and non-zero values are used to stabilize the iterative
process as � becomes smaller. The parameters can also a�ect the performance of the iterative
process by increasing or decreasing iteration counts. In practice we always have �1 = �2;
experimentation suggests that a near optimal value for these parameters is �1 = �2 = 0:175 for
all �, which values are used in all the following numerical experiments. A detailed account
of these parameters can be found in Reference [8].

4. NUMERICAL RESULTS

We (arbitrarily) set a=0:1, A=1:1 and B=1, and the piecewise-uniform mesh for this prob-
lem, ��N� ≡{(xi; yj)}, is then

xi = xi−1 + h; i=1; : : : ; N; x0 = 0:1; h=1=N

yj =

{
2j�=N; j=0; 1; 2; : : : ; N=2

�+ 2(j − N=2)(1− �)=N; j=N=2; : : : ; N
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where

�= min
{
1
2 ; 2�

2=3 ln N
}

We can summarize the problem as

(PN� )




Find (U�; V�) such that ∀(xi; yj)∈�N�
−��2yU

m
� (xi; yj) + �Um−1

� D−
x Um

� (xi; yj) + �Vm−1
� D±

y Um
� (xi; yj)=0

D−
x Um

� (xi; yj) +D−
y Vm

� (xi; yj)=0

D0
yU

m
� (xi; y0)=0 and Vm

� (xi; y0)=0 on �B ∩ ��N�
Um

� = u on {�L ∪�T}∩ ��N�

(12)

The algorithm for solving (PN� ) sweeps across the domain � from �L to �R. At the ith stage
of the sweep, we compute the values of (U�; V�) on Xi= {(xi; yj), 06j6N}, where (U�; V�)
are known on Xi−1. This is achieved by solving the �rst linearized equation for U�, followed
by a solution of the second linear equation for V�.
In order to solve the �rst equation on Xi we need values of U� on Xi−1, boundary values

for Um
� on �B ∪�T and an initial guess at U 0

� on Xi. On each Xi, the 2 point boundary
value problem for Um

� (xi; yj) is solved for 06j6N − 1. Since Um
� (xi; y0) is thus an unknown

the term D±
y Um

� (xi; yj) can and does introduce the value Um
� (xi; y−1), which is eliminated

by implementing the central di�erence approximation of the Neumann condition, so that all
instances of Um

� (xi; y−1) are replaced by Um
� (xi; y1). The initial guess to start the algorithm

i.e. U 0
� on X1 is taken from the prescribed boundary condition for U� (the analytical solution)

on �L. For each Xi, V 0
� is set to be zero.

Once the solution to the tridiagonal system of equations for Um
� is obtained we then solve

the linear system

D−
x Um

� (xi; yj) +D−
y Vm

� (xi; yj)=0; 16j6N

for V�. The process here is trivial as U� is known from the previous step and V� is initialized
using the boundary condition, i.e. V�=0 on �B.
The iterative process is continued until a stopping criterion is achieved. This involves setting

the tolerance tol, for the di�erence between two successive iterates, i.e.

max(|U ∗m
� −U ∗m−1

� | ��N� ; |V ∗m
� − V ∗m−1

� | ��N� )6tol

where U ∗m
� = �1=3Um

� , V
∗m

� = �−1=3 Vm
� . We take tol to be 10

−6. We let m=M for all instances
where the stopping criterion is met. Once this happens, we set U�=UM

� and V�=VM
� on Xi,

and proceed to the next step Xi+1 using U�(xi; yj) as the initial guess for Um
� (xi+1; yj).

In Figure 2 we see the graphs of the numerical solution U� and a graph of the errors |U�−u|
for �=2−10. The graph of the errors |U� − u| in Figure 2 highlights the di�erences and gives
an idea of the accuracy. Similar graphs for V� and |V� − v| are shown in Figure 3. It is worth
noting here that for this value of � we require non-zero stability parameters �1 and �2 to aid
the iterative process in convergence. In fact experimentally, for �62−3, we require non-zero
stability parameters.
To test the numerical solutions for �-uniform convergent, we consider some tables of errors

and orders of convergence. The �rst of these tables, Table I, shows the normalized errors
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Figure 2. Surface plot of numerical solution U�, is shown in (a). A plot of the error in the
solution compared to the exact solution |U� − u|, is shown in (b). Both plots are on �N� ;

�=2−10, N =32, with stabilization factors �1 = �2 = 0:175.
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Figure 3. Surface plot of numerical solution V�, is shown in (a). A plot of the error in the
solution compared to the exact solution |V� − v|, is shown in (b). Both plots are on �N� ;

�=2−10, N =32, with stabilization factors �1 = �2 = 0:175.

Table I. Maximum pointwise errors, EN
� = ‖U� − u‖ ��N� =‖U�‖ ��N� , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0:992D− 02 0:589D− 02 0:321D− 02 0:168D− 02 0:857D− 03 0:433D− 03
2−1 0:194D− 01 0:107D− 01 0:559D− 02 0:287D− 02 0:146D− 02 0:733D− 03
2−2 0:245D− 01 0:130D− 01 0:672D− 02 0:342D− 02 0:173D− 02 0:867D− 03
2−3 0:282D− 01 0:148D− 01 0:759D− 02 0:385D− 02 0:194D− 02 0:973D− 03
2−4 0:346D− 01 0:179D− 01 0:909D− 02 0:459D− 02 0:230D− 02 0:115D− 02
2−5 0:456D− 01 0:231D− 01 0:116D− 01 0:581D− 02 0:291D− 02 0:145D− 02
2−6 0:571D− 01 0:327D− 01 0:166D− 01 0:830D− 02 0:415D− 02 0:207D− 02
2−7 0:571D− 01 0:339D− 01 0:197D− 01 0:112D− 01 0:622D− 02 0:315D− 02
2−8 0:571D− 01 0:339D− 01 0:197D− 01 0:112D− 01 0:622D− 02 0:342D− 02
2−9 0:571D− 01 0:339D− 01 0:197D− 01 0:112D− 01 0:622D− 02 0:342D− 02
2−10 0:571D− 01 0:339D− 01 0:197D− 01 0:112D− 01 0:622D− 02 0:342D− 02

RN
unif 0.75 0.78 0.82 0.85 0.86

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:937–951



944 A. R. ANSARI, A. F. HEGARTY AND G. I. SHISHKIN

Table II. Maximum pointwise errors, ‖V� − v‖ ��N� =‖V�‖ ��N� , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0.238D+00 0.127D+00 0:661D−01 0:338D−01 0:171D−01 0:859D−02
2−1 0.106D+00 0:563D−01 0:293D−01 0:149D−01 0:755D−02 0:380D−02
2−2 0:693D−01 0:375D−01 0:195D−01 0:992D−02 0:501D−02 0:252D−02
2−3 0:872D−01 0:468D−01 0:244D−01 0:124D−01 0:724D−02 0:413D−02
2−4 0.119D+00 0:646D−01 0:339D−01 0:207D−01 0:126D−01 0:700D−02
2−5 0.170D+00 0:949D−01 0:503D−01 0:340D−01 0:203D−01 0:112D−01
2−6 0.218D+00 0.138D+00 0:802D−01 0:542D−01 0:324D−01 0:178D−01
2−7 0.218D+00 0.140D+00 0:967D−01 0:744D−01 0:501D−01 0:282D−01
2−8 0.218D+00 0.140D+00 0:967D−01 0:744D−01 0:501D−01 0:308D−01
2−9 0.218D+00 0.140D+00 0:967D−01 0:744D−01 0:501D−01 0:308D−01
2−10 0.218D+00 0.140D+00 0:967D−01 0:744D−01 0:501D−01 0:308D−01

RN
unif 0.77 0.54 0.38 0.57 0.70

‖U� − u‖ ��N� =‖U�‖ ��N� . We can clearly see from the table that the error is reducing along each
row and the errors have stabilized down along each column of N . The table suggests �-
uniform convergence as we have stability in the errors down each column of values of N
for the various values of �, and along each row we can see a trend of decreasing errors with
rising N . In Table I—and analogously in subsequent tables—the uniform rates of convergence
RN
unif for each N are calculated as

RN
unif = log2

EN
max

E2Nmax

where EN
max = max� EN

� . The computed uniform rates in Table I clearly reinforce the indicated
�-uniform convergence of the numerical solutions.
The corresponding errors and the uniform rates of convergence for V� are given in Table II.

The normalization in Table II is achieved by dividing the maximum absolute error by the
maximum absolute value of V�, for each set of values of � and N in the table.
There is a slight problem noticeable in Table II, which gives the uniform rates of conver-

gence for V�. Note that the rates are decreasing along each of the columns up to the column
for N =128, after which the trend reverses. This phenomenon does not occur for the �at
plate problem [3]. This behaviour indicates the greater sensitivity of the laminar jet problem
in comparison to the �at plate problem. This is further borne by the requirement to use non-
zero values of the stability parameters �1 and �2 for the jet problem, which are not required
for the �at plate problem.

5. APPROXIMATION OF THE DERIVATIVES

We wish to estimate the x and y derivatives of both the horizontal component of velocity
u and the vertical component of velocity v. Because of the presence of the boundary layer
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Figure 4. Surface plot of �1=3D−
x U�, is shown in (a). A plot of the error �1=3|D−

x U� − ux|, is shown in
(b). Both plots are on �N� ; �=2−10, N =32, with stabilization factors �1 = �2 = 0:175.
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Figure 5. Surface plot of D−
x V�, is shown in (a). A plot of the error |D−

x V� − vx|, is shown in (b). Both
plots are on �N� ; �=2−10, N =32, with stabilization factors �1 = �2 = 0:175.

we have to scale the derivatives. The appropriate scaling is complex; each of the derivatives
has to be considered separately. The derivative ux is scaled by a factor �1=3, i.e. �1=3ux, which
is approximated as �1=3D−

x U�. The graphs of the approximation �1=3D−
x U� and of the error

�1=3|D−
x U� − ux| are shown in Figure 4.

The derivative vx does not require any scaling and is approximated as D−
x V�. The graphs

of the approximation D−
x V�, and the error |D−

x V� − vx| are shown in Figure 5.
The derivative uy requires scaling, as for small values of � the derivative is excessively

large within the layer region. The appropriate scaling is �uy, and the approximation is �D−
y U�.

The graphs of �D−
y U�, and the error �|D−

y U� − uy| are shown in Figure 6.
The derivative vy, is scaled by a factor �1=3, i.e. �1=3vy, which is approximated as �1=3D−

y V�.
The graph of the approximation �1=3D−

y V� and the error �1=3|D−
y V�− vy| are shown in Figure 7.

We now look at some error tables to judge the robustness of the approximations of the
derivatives with respect to the perturbation parameter �. Note that all the errors could be
stabilized by dividing by the maximum absolute value of the approximation of the respective
derivative. However, since the approximation of the derivatives ux and vy should be scaled
identically (because these two derivatives form the continuity equation in (2)), we will scale
them by multiplying by a factor �1=3, as used earlier.
The �rst of the results is given in Table III where we see the behaviour re�ecting parameter

robustness. In Table IV we see the errors in the approximation of the derivative D−
y U�. The
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Figure 6. Surface plot of �D−
y U�, is shown in (a). A plot of the error �|D−

y U� − uy|, is shown in
(b). Both plots are on �N� ; �=2−10, N =32, with stabilization factors �1 = �2 = 0:175.
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Figure 7. Surface plot of �1=3D−
y V�, is shown in (a). A plot of the error �1=3|D−

y V� − vy|, is shown in
(b). Both plots are on �N� ; �=2−10, N =32, with stabilization factors �1 = �2 = 0:175.

Table III. Maximum pointwise errors, �1=3‖D−
x U� − ux‖ ��N� \�L , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0.440D+00 0.238D+00 0.123D+00 0:620D−01 0:311D−01 0:156D−01
2−1 0.229D+00 0.127D+00 0:671D−01 0:346D−01 0:176D−01 0:885D−02
2−2 0.244D+00 0.135D+00 0:714D−01 0:368D−01 0:187D−01 0:942D−02
2−3 0.265D+00 0.148D+00 0:781D−01 0:403D−01 0:205D−01 0:110D−01
2−4 0.292D+00 0.166D+00 0:958D−01 0:589D−01 0:331D−01 0:177D−01
2−5 0.324D+00 0.245D+00 0.163D+00 0:966D−01 0:533D−01 0:282D−01
2−6 0.497D+00 0.447D+00 0.276D+00 0.158D+00 0:857D−01 0:450D−01
2−7 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:717D−01
2−8 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01
2−9 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01
2−10 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01

RN
unif 0.07 0.46 0.63 0.72 0.79
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Table IV. Maximum pointwise errors, ‖D−
y U� − uy‖ ��N� \�L =‖D

−
y U�‖ ��N� \�B , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0:582D−01 0:346D−01 0:186D−01 0:974D−02 0:498D−02 0:252D−02
2−1 0:817D−01 0:411D−01 0:206D−01 0:103D−01 0:514D−02 0:257D−02
2−2 0.128D+00 0:651D−01 0:326D−01 0:163D−01 0:816D−02 0:408D−02
2−3 0.199D+00 0.103D+00 0:517D−01 0:259D−01 0:130D−01 0:648D−02
2−4 0.293D+00 0.160D+00 0:817D−01 0:411D−01 0:206D−01 0:103D−01
2−5 0.391D+00 0.243D+00 0.128D+00 0:651D−01 0:326D−01 0:163D−01
2−6 0.416D+00 0.354D+00 0.199D+00 0.103D+00 0:517D−01 0:259D−01
2−7 0.416D+00 0.368D+00 0.235D+00 0.141D+00 0:803D−01 0:411D−01
2−8 0.416D+00 0.368D+00 0.235D+00 0.141D+00 0:803D−01 0:448D−01
2−9 0.416D+00 0.368D+00 0.235D+00 0.141D+00 0:803D−01 0:448D−01
2−10 0.416D+00 0.368D+00 0.235D+00 0.141D+00 0:803D−01 0:448D−01

RN
unif 0.18 0.65 0.73 0.82 0.84

Table V. Maximum pointwise errors, �1=3‖D−
y V� − vy‖ ��N� \�B , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0.440D+00 0.238D+00 0.123D+00 0:620D−01 0:311D−01 0:156D−01
2−1 0.223D+00 0.126D+00 0:669D−01 0:346D−01 0:176D−01 0:885D−02
2−2 0.229D+00 0.133D+00 0:711D−01 0:367D−01 0:187D−01 0:942D−02
2−3 0.229D+00 0.142D+00 0:773D−01 0:402D−01 0:205D−01 0:110D−01
2−4 0.209D+00 0.152D+00 0:958D−01 0:589D−01 0:331D−01 0:177D−01
2−5 0.307D+00 0.245D+00 0.163D+00 0:966D−01 0:533D−01 0:282D−01
2−6 0.497D+00 0.447D+00 0.276D+00 0.158D+00 0:857D−01 0:450D−01
2−7 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:717D−01
2−8 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01
2−9 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01
2−10 0.497D+00 0.474D+00 0.344D+00 0.223D+00 0.135D+00 0:784D−01

RN
unif 0.07 0.46 0.63 0.72 0.79

appropriate scaling for the errors is achieved by dividing by ‖D−
y U�‖ ��N� . It is quite clear that

the errors are reducing along the rows, and they have stabilized down along each of the
columns. In addition, Table IV also shows the uniform rates of convergence. These tables
re�ect �-uniform convergence.
The next table, i.e. Table V also shows �-uniform behaviour.
The next set of tables are for D−

x V�, where a di�culty arises. It is clear that the errors have
stabilized down along each of the columns. The correct scaling for achieving this stabilization
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Table VI. Maximum pointwise errors, ‖D−
x V� − vx‖ ��N� \�L =‖V�‖ ��N� \�L , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0.371D+01 0.279D+01 0.326D+01 0.311D+01 0.280D+01 0.248D+01
2−1 0.144D+01 0.934D+00 0.112D+01 0.136D+01 0.147D+01 0.153D+01
2−2 0.142D+01 0.107D+01 0.142D+01 0.163D+01 0.172D+01 0.177D+01
2−3 0.126D+01 0.185D+01 0.228D+01 0.270D+01 0.361D+01 0.418D+01
2−4 0.236D+01 0.315D+01 0.371D+01 0.510D+01 0.635D+01 0.711D+01
2−5 0.407D+01 0.508D+01 0.601D+01 0.850D+01 0.103D+02 0.114D+02
2−6 0.516D+01 0.785D+01 0.990D+01 0.137D+02 0.165D+02 0.182D+02
2−7 0.516D+01 0.795D+01 0.120D+02 0.188D+02 0.255D+02 0.289D+02
2−8 0.516D+01 0.795D+01 0.120D+02 0.188D+02 0.255D+02 0.315D+02
2−9 0.516D+01 0.795D+01 0.120D+02 0.188D+02 0.255D+02 0.315D+02
2−10 0.516D+01 0.795D+01 0.120D+02 0.188D+02 0.255D+02 0.315D+02

RN
unif −0:62 −0:60 −0:65 −0:44 −0:30

Table VII. Maximum pointwise errors, ‖D−
x V�−vx‖�̃N� =‖V�‖�̃N� , computed on the sub-domain

�̃N� , for various values of � and N .

Number of intervals N

� 32 64 128 256 512 1024

1 0.225D+01 0.132D+01 0.718D+00 0.356D+00 0.177D+00 0:895D−01
2−1 0.926D+00 0.538D+00 0.292D+00 0.149D+00 0:754D−01 0:381D−01
2−2 0.731D+00 0.433D+00 0.237D+00 0.120D+00 0:601D−01 0:304D−01
2−3 0.776D+00 0.464D+00 0.254D+00 0.129D+00 0:648D−01 0:328D−01
2−4 0.879D+00 0.537D+00 0.297D+00 0.150D+00 0:757D−01 0:383D−01
2−5 0.104D+01 0.656D+00 0.367D+00 0.185D+00 0:933D−01 0:473D−01
2−6 0.115D+01 0.829D+00 0.468D+00 0.239D+00 0.122D+00 0:621D−01
2−7 0.115D+01 0.826D+00 0.525D+00 0.295D+00 0.164D+00 0:857D−01
2−8 0.115D+01 0.826D+00 0.525D+00 0.295D+00 0.164D+00 0:915D−01
2−9 0.115D+01 0.826D+00 0.525D+00 0.295D+00 0.164D+00 0:915D−01
2−10 0.115D+01 0.826D+00 0.525D+00 0.295D+00 0.164D+00 0:915D−01

RN
unif 0.78 0.88 1.01 1.01 0.95

of the errors is obtained by dividing the maximum absolute error in each instance by the
maximum absolute value of V�.
Notice that along the rows the errors are increasing which leads to the negative rates in

Table VI. This behaviour would seem to indicate that computation of this derivative is di�cult
near �L. To see whether we can compute the derivative accurately anywhere in the domain,
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we consider the errors on the sub-domain �̃N� = ��N� ∩ (0:2; 1:1]× [0; 1]. The results in Table
VII verify that the larger errors occur in the vicinity of �L and that �-convergence for the
scaled approximation to vx is only achievable on a subdomain.
Note again that the range of values of the perturbation parameter, �, that has been considered

in the preceding sections, is not physically valid. The laminar jet exists and remains non-
turbulent for values of �≈ 2−4 [5]. Our reason for choosing values of � outside the physical
range is to put our numerical method through a rigorous test.
Also, the value of a re�ects how far we are from the source. From a physical point of

view it is appropriate to choose a such that we are far from the source. Our choice of a in
the preceding sections has been to stay close to the source. The reason for this rests with the
fact that the problem serves as a challenging model to test our theories on, but only when we
stay close to the singularity. It has been suggested that the distance from the source should
be some function of �, i.e. a should be a function of �. We have noted that a=1=� seems
to give solutions that are �-uniform convergent and do not require the use of the stabilization
parameters �1 and �2. As already mentioned, there is no di�culty in solving the problem in
this case because of the insigni�cance of the boundary layer; i.e. in fact the problem can also
be solved on a uniform mesh, however, the results are less accurate.

6. CONSERVATION OF MOMENTUM

At the beginning of this paper, it was noted that there is a requirement of conservation of the
momentum in the x direction, i.e. for each x,∫ ∞

−∞
�u2 dy= J0 = constant (13)

where J0 = 1 for the purpose of all our results. We now examine some computed approxima-
tions of integral (13). Note that, as this problem is symmetric about the jet axis (y=0), and
since �= J0 = 1, ∫ ∞

0
u2 dy= 1

2 (14)

Some sources of error in the approximation of (14) are evident. The domain of numerical
solution is [0; 1], so we can actually only approximate

∫ 1
0 u2 dy. As the numerical method

is non-conservative, some loss of conservation is also expected, in particular as x increases,
since the jet then spreads out. We will approximate the integral using Romberg’s method with
the tolerance set to 10−6. Table VIII shows the approximation of (14) at the left boundary �L.
These values are quite close to the actual value of 0.5 and, in fact, as N →∞ the computed
loss of conservation tends to zero, and more quickly if �→ 0.
Table IX shows the approximation of (14) at the right boundary �R; here we notice that

the values, as anticipated, are smaller than the values at the left boundary. However, for
large N and reasonably, small �, the loss of computed momentum is small. The fact that
the computational domain is �nite strongly in�uences the computations for �=1, where the
spread of the jet outside the computational domain is most signi�cant.
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Table VIII. The approximation of integral (14) at the left boundary �L.

Number of intervals N

� 32 64 128 256 512 1024

1 0.453D+00 0.469D+00 0.477D+00 0.481D+00 0.483D+00 0.484D+00
2−4 0.484D+00 0.495D+00 0.499D+00 0.500D+00 0.500D+00 0.500D+00
2−8 0.466D+00 0.486D+00 0.495D+00 0.498D+00 0.500D+00 0.500D+00
2−12 0.466D+00 0.486D+00 0.495D+00 0.498D+00 0.500D+00 0.500D+00
2−16 0.466D+00 0.486D+00 0.495D+00 0.498D+00 0.500D+00 0.500D+00
2−20 0.466D+00 0.486D+00 0.495D+00 0.498D+00 0.500D+00 0.500D+00

Table IX. The approximation of integral (14) at the right boundary �R.

Number of intervals N

� 32 64 128 256 512 1024

1 0.180D+00 0.183D+00 0.184D+00 0.185D+00 0.185D+00 0.185D+00
2−4 0.420D+00 0.456D+00 0.476D+00 0.486D+00 0.491D+00 0.494D+00
2−8 0.384D+00 0.426D+00 0.459D+00 0.477D+00 0.487D+00 0.493D+00
2−12 0.381D+00 0.429D+00 0.459D+00 0.477D+00 0.487D+00 0.493D+00
2−16 0.375D+00 0.426D+00 0.458D+00 0.477D+00 0.487D+00 0.493D+00
2−20 0.371D+00 0.424D+00 0.457D+00 0.476D+00 0.487D+00 0.493D+00

7. SUMMARY

We have demonstrated computationally that the numerical method (10)–(11) and associated
algorithm (12) gives solutions for the velocity terms and their scaled discrete derivatives which
appear to be uniformly convergent with respect to the viscosity �. The number of iterations
of the algorithm is also independent of the perturbation parameter �. We have considered also
the issue of conservation of the momentum for each x and noted that, since our method is not
taking the conservation into account explicitly, some momentum is lost at the right boundary
�R. However, for small � and large N the momentum is reasonably conserved.
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